
ar
X

iv
:2

10
2.

09
79

0v
1

 [
cs

.C
R

]
 1

9
Fe

b
20

21

“Do this! Do that!, And nothing will happen”

Do specifications lead to securely stored passwords?

Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve and Awais Rashid

University of Bristol

Abstract—Does the act of writing a specification (how the code
should behave) for a piece of security sensitive code lead to
developers producing more secure code? We asked 138 developers
to write a snippet of code to store a password: Half of them
were asked to write down a specification of how the code
should behave before writing the program, the other half were
asked to write the code but without being prompted to write a
specification first. We find that explicitly prompting developers to
write a specification has a small positive effect on the security of
password storage approaches implemented. However, developers
often fail to store passwords securely, despite claiming to be
confident and knowledgeable in their approaches, and despite
considering an appropriate range of threats. We find a need for
developer-centered usable mechanisms for telling developers how
to store passwords: lists of what they must do are not working.

I. INTRODUCTION

Developers struggle to store passwords securely. Naiak-

shina et al. have repeatedly shown that developers do not build

in security unless explicitly asked to do so (and even then

typically do so poorly) [3], [4], [5]. In organizations, one can

support developers coding securely through code review, and

acceptance testing—but not all developers work in teams and

many work alone on their own projects [6], [7].

Developers continue to seek guidance on how to handle

passwords. In a survey of developers’ posts on Stack Overflow

(a popular developer question and answer site) Barua et al.

found that posts related to authentication and security (in-

cluding password storage) and were one of the top 20 topics

on the site and accounted for 2.1% of all questions [8].

Furthermore in a survey of just security-focussed posts on

Stack Overflow, Yang et al. found that the most viewed

of all security-focussed posts related to passwords [9], with

each post viewed on average 2,731 times. Whilst there are

alternatives to passwords [10], many developers still appear

to be working with passwords and implementing password

storage in their apps and software. As well as working with

passwords they are seeking guidance on how to do it right.

It is well established that writing a specification before

implementing it leads to code that is of a higher quality [11],

[12], [13], [14], [2], [15]. Since specification writing is ben-

eficial for quality, does the act of writing one also improve

developers’ security practices? Naiakshina’s work suggests

that developers only consider security aspects if explicitly

prompted [5]; but if we try to continuously prompt developers

to work securely we risk security fatigue [16], [17]. Since

The quote in the title is attributed to Harry S. Truman [1], and is used as
the opening quote to chapter 6 in The Mythical Man-Month [2].

specification is an established developer practice, this paper

seeks to explore whether the act of writing any form of

specification primes developers to program securely: in other

words whether giving developers time to make a plan (however

formally or informally) leads them to either recalling more

about how to store passwords, or to recall that a standard

exists and to check.

To test this we recruited 138 developers from an online

platform for recruiting participants for studies, and asked them

to write code to store a password in whatever language they

were most comfortable with. Half the developers were asked to

write down a specification—any form of specification from a

formal definition [18] to a prose description [19]—of how they

would implement this before they were allowed to write their

solution, the rest were allowed to write their implementation

immediately. We scored the security of their implementations

using Naiakshina’s end-user password storage criteria [3]

(Figure 1), which is itself based on NIST SP 800-63-3 [20],

and analyzed their written justifications of their choices and

threats considered.

Specifically, we address the following research questions:

RQ1 Does specification writing lead to a measurable improve-

ment in password storage method?

RQ2 What approaches do developers take when implement-

ing password storage and what do they typically remem-

ber and forget?

RQ3 How do developers justify their implementation ap-

proach and what threats do they consider?

Our key findings are as follows:

• Developers who were explicitly prompted to write a speci-

fication, stored their passwords slightly more securely than

those who were not prompted (p = 0.027, rrb = 0.209).

• Only 38% of developers remembered to hash passwords,

14% remembered to salt them, but other secure password

storage practice was largely absent (Figure 1).

• Developers think they are storing passwords correctly, but

their scores according to Naiakshina’s criteria (Figure 1) do

not indicate best practice.

• If given time to reflect, some developers do realize that there

are threats to stored passwords and that their solutions may

not be secure.

Our novel insights are in examining whether specification

is a useful tool for priming for security related tasks, and

how developers justify the code they write and the threats

they consider with respect to the specifications they write.

http://arxiv.org/abs/2102.09790v1

• The end-user password is salted (+1) and hashed (+1).

• The derived length of the hash is at least 160 bits long

(+1).

• The iteration count for key stretching is at least 1,000

(+0.5) or 10,000(+1) for PBKDF2 and at least 210 for

bcrypt (+1).

• A memory-hard hashing function is used (+1).

• The salt value is generated randomly (+1).

• The salt is at least 32 bits in length (+1).

Fig. 1. Naiakshina’s end-user password storage assessment criteria [3], copied
verbatim. A score ≥ 6 indicates industrial best practice.

Analyzing the developer’s rationale suggests that whilst some

developers consider appropriate threats, their knowledge of

best practice is out-of-date and that current cryptographic

guidelines [20]. Providing lists of what developers must do

is not working. Instead we must fit the task to the developer

and provide usable mechanisms for password storage.

II. BACKGROUND AND RELATED WORK

A. Benefits of specification

The benefits of program specification are well established

in both the academic and engineering communities. Spolsky

notes their benefit saying:

“If you don’t have a spec, you will always spend

more time and create lower quality code.” [13]

Brooks Jr. also notes the benefit of a specification:

“Careful function definition, careful specification,

and the disciplined exorcism of frills of function and

flights of technique all reduce the number of system

bugs that have to be found.” [2]

Dromey suggested that quality models and requirements spec-

ifications could lead to an improvement in software qual-

ity [21]. Haigh and Landwehr have suggested that by build-

ing code to security specifications (drawing analogy to US

building codes) we can reduce the vulnerability in software

systems [22], [23]. Polikarpova et al. found that twice as

many bugs were found when code was written with a strong

specification [24]. Mohanani et al., however, found that speci-

fications can lead to developers blindly following them without

considering why the rules exist [25]. Our work seeks to

demonstrate that the act of writing a specification creates an

implicit priming effect that can impact a developer’s approach

to security.

B. Work on password security

There is a large body of work surrounding passwords, but a

small subset that addresses how developers perform password

storage and present analysis of the process. Password storage

is a feature generally supported by cryptographic libraries.

The usable security community has studied the developers’

interaction with the cryptographic APIs.

Naiakshina et al. ran the first qualitative usability study

to observe how 20 computer science students address the

task of password storage [3]. They concluded that participants

consider functionality before security. Unless participants are

primed, they do not think the task of password storage requires

a secure solution. On the other hand, participants who were

primed to consider security used various hash functions and

different algorithms to secure their password. For the par-

ticipants who were primed, none of their solutions met the

academic standards of the time. Cryptographic frameworks

offer password storage as an opt-in feature. This means

the developers needs to understand cryptography to store

passwords. 10% of the non-primed participants attempted a

secure solution for password storage while 70% of the primed

participants attempted a secure solution. On asking the non-

primed students about the security oversight, they replied

that they would have implemented secure storage if they

were writing code for a commercial product. To address this

insight Naiakshina et al. conducted a field study with freelance

developers. Like students, freelance developers do not consider

security for password storage, unless prompted. Both students

and freelance developers have misconceptions about secure

password storage, however interestingly freelance develop-

ers show a wider range of these misconceptions. Freelance

developers often stored passwords with Base64, confusing

encoding functions with hash functions, a misconception they

shared with end-users. Naiakshina et al. conclude, that even

when developers believe they are coding for companies they

seldom store the password securely without prompting [5].

Acar et al. conducted an experiment with GitHub developers

to establish if they are an accurate representation of developers

in general for security-based developer studies. The GitHub

developers were asked to perform password storage securely.

The solutions included the storage of plain-text passwords,

use of static salts, use of unsafe hashing algorithms [26].

Our work goes beyond Acar et al.’s and Naiakshina et al.’s

work by examining developer’s rationale for their password

storage implementations and finds that, whilst developers

aren’t storing passwords securely, they think they’re following

best practices.

Oesch et al. evaluated 13 popular password managers and

their solutions for handling the 3 main stages of a password’s

life-cycle; password generation, storage, and auto-fill. Their

evaluation of password storage showed that developers stored

information in plain-text, left metadata unencrypted, and used

insecure defaults [27]. Our work compliments this by diving

deeper into why developers do not engage with best practice.

There is a large body of work on end-user passwords and their

security [28], [29], [30], [31], [32], [33], [34], [35], [36]. In

contrast our work focuses on developer’s approaches to storing

passwords.

C. Work on secure programming

Weir et al. looked at the prevalence of security assurance

techniques (including threat assessment and code review)

among Android developers [37]. They found that between

only 22–30% of Android developers used these techniques

despite a high perceived need for security. We found that

∼56% of developers claimed to write a specification without

prompting. Fischer et al. examined the amount of code copied

from Stackoverflow, and its security [38]. They found that

15% of Android apps contained vulnerable code copied from

Stackoverflow. We found that ∼8% of developers copied from

Stackoverflow specifically, but that a further ∼12% copied

from other online sources.

Many vulnerabilities arise due to developers misusing cryp-

tographic libraries. Nadi et al. performed an empirical in-

vestigation into challenges developers face when using Java

cryptographic APIs. Based on the analysis of 100 Stack

Overflow posts, 100 GitHub repositories and a survey of

48 developers, they found that developers find cryptographic

features such as encryption and digital signatures difficult to

program. they also found that APIs are generally perceived to

be too low-level for developers [39].

Egele et al. studied the integration of cryptographic APIs

in Android applications. They found errors in 88% of the

applications. CryptoLint was introduced as a static analysis

tool to find these errors [40]. Patnaik et al. performed a the-

matic analysis of 2491 Stack Overflow posts from developers

seeking help with using 7 cryptographic libraries, and found

16 usability issues [41] that could be related to Green and

Smith’s earlier work that proposes usability principles for

cryptographic APIs. show that developers find cryptographic

APIs challenging to use. We find that as well as struggling

with APIs developers are not clear on what they need to do to

store passwords securely, following current guidelines [20].

III. METHOD

We used a between-subjects design to explore whether the

act of specification writing results in more secure code being

produced.

A. Study Design

To test the effect specification writing had on implementa-

tion we designed a study where developers would implement

the part of an app’s code for storing passwords. We chose pass-

word storage as a task as it is security relevant, implementable

within a relatively short space of time and is a common task

with plenty of guidance available that most developers would

have encountered in their work.

Our study was implemented as a set of online tasks and

questions (to capture rationale). Developers were randomly

assigned a grouping (either specification or no-specification)

and shown the following scenario:

You are working on the backend of an application. Users

create an account on the app, and login before being allowed

to use the program. The application is complete bar one

task: writing the login system users use to authenticate

with the app. You have been tasked with implementing this

part of the app. You decide to start with storing the users’

passwords. Your boss trusts your judgment when it comes

to implementing this feature.

Developers in the specification group were then asked to write

a specification for how the password should be stored.

You decide to start by writing a specification for how the

password should be stored, and to note down any special

requirements and implementation details. You are provided

with a username and password, and they have been checked

to see that they are valid text.

Describe your specification below. You can describe your

specification using formal notation, informal notes, a list,

mathematical notation or any other method. If you draw a

picture as part of your specification, please say so and say

what is shown.

Both groups were then asked to implement the password

storage using whichever language they wished. If they used

a real programming language they were asked to note it.

You start writing the password storage method. You have

been given the password the user wishes to use and you

need to store it so that it can be checked whenever users try

and login. You are given a username and password. Both

have been checked to be valid text (i.e. neither empty nor

containing bad characters) Write code (or pseudocode) to

implement the password storage. Your code doesn’t need to

be compilable or syntactically correct but should illustrate

your general approach to the implementation.

Developers in the no-specification group were then asked if

they had made some form of specification or plan before

starting their implementation (without being asked to). Those

that indicated that they did, were asked to describe their

specification and their results were added to those of the

specification group. Both groups were then asked to provide

a rational for their coding approach in a free text box. They

were asked if they considered what threats might attack a

stored password, and, whether they referred to any standards

for password storage when implementing the code. Finally,

participants were asked whether they had any formal quali-

fications in software engineering, or computer science; and,

to rate their knowledge of security and cryptography on a

5-point Likert scale,and briefly describe their security and

development experience.

B. Analysis

To analyze the data we scored each of their implementations

using Naiakshina’s metric [3] and compared the average score

between different groups using the Mann Whitney U test (a

rank-based non-parametric test to explore if two groups are

distinct [42]) to test for significance and to calculate the effect

sizes (using the rank-biserial correlation [43]). To analyze

developer’s rationale and threat models we asked developers

to describe them and analyzed them qualitatively using a

grounded theory approach [44], [45].

C. Recruitment and Ethics

Developers were recruited from Prolific Academic and were

screened, by Prolific, based on their familiarity with computer

programming. Developers were offered a financial reward for

completing the study of £5, inline with the living wage in our

country. All developers who completed the study were paid

for their work.

Ethical approval for the study was sought from and granted

by Bristol University. No personal data was collected, and

demographic data was deleted after coding and validation.

Data is available by request.

D. Limitations and Threats to Validity

We acknowledge the following limitations and threats to our

study:

• Our developers were recruited by Prolific Academic and

as such, may not be representative of how developers

as a whole behave. Other studies have also used similar

populations for studying passwords and developers [46],

[31], [47].

• Developers may not know how to store a password, and may

not be aware that it is a security related task. We mitigate this

by qualitatively analyzing the developers’ rationale behind

their code.

• Developers who were not prompted to write a specification,

may opt to write a specification anyway. To correct for this

we asked developers not in the specification group if they

wrote a specification, after their implementation. We assume

that the specification produced by the unprompted group is

similar to the prompted group (and we ask them to describe

it), but this may not be the case and some participants may

retrospectively write a specification.

• We ask the developers about their qualifications and expe-

rience, however all data is self-reported and may not be

accurate.

• We asked developers to implement password storage and

99 developers (72%) did so. 19 developers (14%) instead

appeared to write code implementing password authentica-

tion (how one would check if a password was correct) but

from which their approach to password storage could be

seen. A further 15 developers (11%) stored the password,

but did so only checking if the password contained a suitable

range of letters, numbers and symbols, 3 (3%) approached

the problem by retransmitting their passwords over HTTP1,

and 1 insisted the passwords be stored alphabetically. We

include all in our analysis, as they were all conceivably ways

a developer may approach storing passwords.

• Scoring implementations according to Naiakshina’s criteria

could introduce subjectivity. To mitigate this, one author

scored and then another author independently rescored all

the implementations and calculated Cohen’s Kappa (a mea-

sure of inter-rater reliability [48]). The kappa-value indicates

almost perfect agreement (κ = 0.94) [48]. Similarly, our

codebooks, whilst grounded in data, were likely influenced

by the coder’s background and experiences. Using our code-

books a separate coder independently re-coded the entire

1Three appeared to have copied the question from:
https://stackoverflow.com/questions/19999417/password-storage-in-code-how-to-make-it-safe.

dataset. We found substantial agreement (κ = 0.72) with

our coding for developers’ explanations for their implemen-

tations (Table VI) and almost perfect agreement (κ = 0.84)

with our coding for the threats developers considered.

• We measure developers’ password storage approaches using

Naiakshina’s criteria, but this poses a construct validity

threat. We chose this metric as it has been used in prior

work [3], [5], and on a NIST standard for password stor-

age [20]. We mitigate this threat by qualitatively analyzing

why developers wrote the code they did as well as their

implementations.

IV. QUANTITATIVE RESULTS

Table III reports how the teams scored against Naiakshina’s

criteria (Figure 1). In our sample, only 53 developers (38%)

produced outputs that fulfilled at least one part of Naiakshina’s

criteria. The most common criterion fulfilled was that of

hashing data (demonstrated by 38% of participants who scored

a point, 14% of overall sample). Just under 20% of the

developers who scored a point used a random salt or an

appropriate hash length (7% overall); and the remainder of

the points in Naiakshina’s criteria were awarded rarely.

A. RQ1: Do specifications lead to securely stored passwords?

Developers prompted for a specification (n = 61) scored

better (µ = 1.03) than those that were unprompted (n = 77,

µ = 0.47)—a comparison by Mann-Whitney U suggests that

this is a significant difference (p = 0.024, U = 1947.5), but

with only a small effect size (rank-biserial coefficient [43],

rrb = 0.171). There remains a significant difference in

performance if we omit the subset of the unprompted group

who reported writing a specification without being asked to—

prompted participants (n = 61, µ = 1.03), in contrast to

developers who did not write a specification (n = 34, µ =

0.38). The two groups are distinct (Mann-Whitney U = 820,

p = 0.027) but the effect size remains small (rrb = 0.209).

However, a comparison between all participants who wrote a

specification, prompted or not, (n = 104, µ = 0.83) and those

who did not write a specification (n = 34, µ = 0.38) is not

statistically significant (p = 0.061, U = 1495, rrb = 0.154).

This could be explained by developers in the unprompted

specification group (those who were not asked to write a spec

but who claimed to have written one anyway) actually writing

their spec after their implementation in response to us asking

if they had written one beforehand. This theory is supported

by Table II where we found no significant difference between

the unprompted specification and the group that claimed not

to write a specification (p = 0.247).

The distribution of scores is given in Table I. 50–70% of

developers did not store a password in any meaningfully secure

way (a score of 0), and no developer obtained a perfect score

(of 7) using Naiakshina’s metric, although two developers

did meet the score indicating best practice (a score of 6;

both were in the prompted specification group). Of the 77

developers whom we did not prompt to write a specification

56% (43) claimed to write one anyway unprompted; 26% (36)

https://stackoverflow.com/questions/19999417/password-storage-in-code-how-to-make-it-safe

TABLE I
DISTRIBUTION OF SCORES FOR PASSWORD STORAGE METHODS BY DIFFERENT GROUPS. ABSOLUTE VALUES ARE GIVEN IN (PARENTHESES). THE

SPECIFICATION GROUP CONSISTS OF TWO-SUBGROUPS: THOSE THAT WE EXPLICITLY PROMPTED FOR A SPECIFICATION, AND THOSE THAT WE DID NOT

PROMPT BUT REPORTED WRITING ONE UNPROMPTED. A SCORE OF 6 OR MORE IS CONSIDERED TO BE FOLLOWING BEST PRACTICE.

Group Count > 0 0 1 2 3 4 5 6 7 µ σ

Specification 104 43 59% (61) 20% (21) 11% (11) 5% (5) 4% (4) 0 2% (2) 0 0.83 1.30
Prompted specification 61 27 56% (34) 15% (9) 15% (9) 7% (4) 5% (3) 0 3% (2) 0 1.03 1.51
Unprompted specification 43 16 63% (27) 28% (12) 5% (2) 2% (1) 2% (1) 0 0 0 0.53 0.88

Unprompted 77 26 66% (51) 25% (19) 6% (5) 1% (1) 1% (1) 0 0 0 0.47 0.79
No Specification 34 10 71% (24) 21% (7) 9% (3) 0 0 0 0 0 0.38 0.65

Used standard 36 16 56% (20) 19% (7) 11% (4) 8% (3) 3% (1) 0 3% (1) 0 0.94 1.41
No standard 102 37 64% (65) 21% (21) 10% (10) 2% (2) 3% (3) 0 1% (1) 0 0.64 1.10

Formally qualified 59 27 54% (32) 22% (13) 15% (9) 5% (3) 3% (2) 0 0 0 0.81 1.09
Not formally qualified 79 26 67% (53) 19% (15) 6% (5) 3% (2) 3% (2) 0 3% (2) 0 0.65 1.26

Overall 138 53 62% (85) 20% (28) 10% (14) 4% (5) 3% (4) 0 1% (2) 0 0.72 1.19

TABLE II
COMPARISON BETWEEN GROUPS USING THE MANN-WHITNEY U TEST.

Group 1 Group 2 U p rrb

Prompted Specification Unprompted 1948 0.024 0.171

Specification (all) No specification 1495 0.061 0.154
Prompted specification No specification 820 0.027 0.209
Unprompted specification No specification 675 0.247 0.077

Used standard No standard 1638 0.135 0.108

Formal qualification No qualification 2018 0.061 0.134

TABLE III
FREQUENCY DIFFERENT POINTS IN NAIAKSHINA’S CRITERIA WERE

OBSERVED COMPARED TO THE WHOLE POPULATION. NO ANSWER SCORED

A HALF-POINT FOR KEY-STRETCHING. (ABSOLUTE VALUES).

Criteria Observations

Hashed 38% (53)
Salted 14% (19)
Hash length 7% (9)
Key stretching 2% (3)
Memory-hard hashing 1% (1)
Random salt 7% (10)
Salt length 3% (4)

of developers reported referring to some kind of standard or

guide when writing their password storage method; 43% (59)

claimed some formal software engineering qualification.

Finding: Examining the rank-biserial correlation (rrb) to the

scores themselves in Table I, suggests that whilst forcing

developers to write a specification before coding will lead

to more secure password storage approaches (p = 0.024),

it isn’t going to make a huge difference—developers might

remember to hash them or to add salt, but will still leave

them stored insecurely.

B. So what else has an effect?

If the act of forcing developers to write a specification only

has a small impact on their ability to store passwords securely,

then do we find anything else having an effect?

TABLE IV
CO-OCCURRENCES OF POINTS IN NAIAKSHINA’S CRITERIA (I.E. 36% OF

ALL PARTICIPANTS WHO HASHED THEIR PASSWORD ALSO SALTED THEIR

PASSWORDS). (ABSOLUTE VALUES).

H
a

s
h

e
d

S
a

lt
e

d

H
a

s
h

le
n

g
th

K
e
y

s
tr

e
tc

h
in

g

M
e

m
o

ry
-h

a
rd

R
a

n
d

o
m

s
a

lt

S
a

lt
le

n
g

th

Hashed 36%
(19)

17%
(9)

6%
(3)

2%
(1)

19%
(10)

8%
(4)

Salted 100%
(19)

26%
(5)

11%
(2)

0%
(0)

53%
(10)

21%
(4)

Hash length 100%
(9)

56%
(5)

22%
(2)

0%
(0)

56%
(5)

22%
(2)

Key stretching 100%
(3)

67%
(2)

67%
(2)

0%
(0)

67%
(2)

67%
(2)

Memory-hard 100%
(1)

0%
(0)

0%
(0)

0%
(0)

0%
(0)

0%
(0)

Random salt 100%
(10)

100%
(10)

50%
(5)

20%
(2)

0%
(0)

30%
(3)

Salt length 100%
(4)

100%
(4)

50%
(2)

50%
(2)

0%
(0)

75%
(3)

TABLE V
OBSERVATIONS OF SPECIFIC HASHING METHODS USED BY DEVELOPERS.

SOME DEVELOPERS RECOMMENDED MULTIPLE HASHING METHODS.

Hash Observations

Encryption 9
AES 1
MD5 6
SHA1 4
SHA256 7
SHA512 1
base64 3
Custom cipher 1

bcrypt 6
PBKDF2 4
Argon2 1

Insecure method 26
Secure method 11

Participants reported their familiarity with cryptography

on a 5-point Likert scale. There is a small positive rela-

tionship between reported cryptography experience and score

(Spearmans Rho [49], ρs = 0.333, p = 0.00), with most

developers reporting that they had little to no experience

(107, 78%) (No experience: 44 (32%), little experience: 63

(46%), moderate experience: 25 (18%), very experienced: 4

(3%), extremely experienced: 2 (1%)). This is in contrast to

the findings of Hazhirpasand et al. who found no significant

relationship between developer experience and their ability to

use a cryptography API [50]—though Hazhirpasand et al. rated

developer experience on the basis of activity on GitHub, as

opposed to a self-reported value. We did not find a significant

relationship between developers who had a formal software

engineering qualification and those who did not (p = 0.061).

Participants who reported using a standard to inform their code

implementation scored better than those who used no standard

but not significantly (p = 0.135).

C. RQ2: What did developers do?

Our observations of hashing and salting rates are broadly

inline with what Naiakshina et al. observed [3], where an

overall 35% (7

20
) of developers hashed passwords and 25%

(5

20
) also salted them—however Naiakshina et al.’s study

explicitly primed half of their developers (10
20

) by asking them

to store them security, and only the primed groups hashed or

salted their passwords. In contrast, in our findings we observe

similar rates over all participants.

In our study we asked developers to provide code in any

programming language, including pseudocode. Most devel-

opers described their implementation in these terms using

functions called hash and appending salts, however some

gave specific methods for storing their passwords. Table V

shows the specific methods we encountered for hashing pass-

words. Many developers recommended hash functions that

were inappropriate for password storage2—including MD5,

the SHA family, and a substitution cipher. Other developers

recommended encryption (which is unsuitable for password

storage [20]), or even using base64. Of all the developers who

stored their passwords hashed, 50% (26) used an inappropriate

hashing method [20], and only 21% (11) recommended a

secure modern password hash. One developer recommended

both a secure and insecure method:
...hash password in bcrypt or md5...

(scored 1)

Finding: Only a third of developers wrote code to store their

passwords hashed. 50% of those developers recommended

an insecure hash function, and only 21% recommended a

secure hash function. The remaining 29% did not specify

the method—they just ‘hashed’ them. 14% of developers

remembered to salt and hash their passwords. More com-

prehensive security (Figure 1) was rare.

2They are quick to calculate using little memory, thus making them
amenable to cracking, unlike memory hard hashes such as PBKDF2.

V. RQ3: WHY ARE DEVELOPERS STORING PASSWORDS

LIKE THIS?

After implementing their solutions we asked developers why

they had used a particular approach. Two of the authors used

a grounded theory approach [44] to analyze the responses.

Two passes were required to reach the point of theoretical

saturation [45] when no new codes were identified. The

resulting codebook, and illustrative examples of each code, is

shown in Table VI. We also contrasted the distribution of codes

in the prompted specification and no specification groups and

found them to be broadly similar—with the no specification

group being slightly more likely to report they wrote their

code the way they did because the implementation was easy.

Consequently our remaining analysis of developers explores

why they implemented password storage in the way they did,

and is over the entire study group.

We also asked the developers if they considered any threats

when implementing their password storage solution? Threat

modeling is a standard technique when designing for secu-

rity [51] that encourages developers to consider what defenses

are needed to mitigate the potential threats to a system. 55%

(77) developers reported considering potential threats when

implementing their password storage solution. Their responses

were analyzed by one author, again using a grounded theory

approach [44]. Two passes were required to reach the point of

theoretical saturation [45] when no new codes were identified.

The resulting codebook, again with illustrative examples of

each code, is shown in Table VII.

A. You either think you do know, or you know you don’t know

Our analysis of the reasons why developers implemented

password storage in the ways they did reveal two interest-

ing sub-groups. Several answers appear to indicate that the

developers thought they had stored the passwords properly

(the experience, replication of previous efforts, perceived best

practice and taken under advisement codes); whereas others

seemed to know that their implementation was limited and that

they didn’t know how to do it (the naı̈ve, acknowledgment of

limitations and only way I know codes).

Within the group who thought they knew how to store pass-

words, developers indicated that they believed their approaches

were best practice. One developer stored the password directly

into a database:

INSERT INTO ‘users‘ (‘username‘, ‘password

‘) VALUES (’user’, PASSWORD(’password1

’));. . .

They explained this as:

“Because that is the best way to store the password”

Yet their solution stores the passwords directly without hashing

or salting: they scored 0. Others stated:

“this is most accepted way of storing passwords”

(scored 4)

“It’s based on corporate best practices” (scored 0)

TABLE VI
CODEBOOK FORMED FROM THE ANALYSIS OF DEVELOPERS’ EXPLANATION OF THEIR IMPLEMENTATION APPROACH. QUOTES ARE GIVEN TO

ILLUSTRATE THE USE OF ALL CODES WITH RELEVANT PASSAGES UNDERLINED. SOME RESPONSES WERE ASSIGNED MORE THAN ONE CODE. NO MORE

THAN 3 CODES WERE USED TO CAPTURE ANY SINGLE RESPONSE.

Code Description Count P
ro

m
p

te
d

S
p

e
c

N
o

S
p

e
c

Implementation Ease The developer wrote it like that as the implementation would be “simple” 36 16% 29%

“Because it was a simple but quite effective way to store. To ensure that the data is secure, the function that encrypts the password

must be very good.” (scored 0)

Readability The developer focused on how understandable their code would be to a reader. 8 7% 9%

“I wrote that way because it shows the idea very clearly. The encryption code is a more difficult question and needs time and ideas to

implement a good encryption.” (scored 0)

Naı̈ve The developer wrote the code in a literal manner without considering the merits
of any other approaches.

13 7% 12%

“Because I don’t know how to wrote code, so just used a literal approach.” (scored 0)

Experience The developer made reference to their experience when describing how they
wrote their code.

19 11% 18%

“I’m somewhat experienced in applied security and I consider the password should be stored securely, considering the worst case

possible.” (scored 3)

Replication of previous efforts The developer said they had done it like this before. 8 5% 6%

“I wrote code like this because it is something I have done before. I’ve written a login system for a password manager so recognise

that passwords before storage should always be hashed or encrypted to avoid storing them in plain text. I used a struct mainly for
storage purposes of this task, but would normally use a database such as SQL to store them, after hashing.” (scored 2)

Feature justification The developer justified a specific feature of their implementation (e.g. ability to
send password reminders).

4 3% 3%

“This is a simple way to code and allow for a reminder to the recipient!” (scored 0)

Method justification The developer justified the structure of their code. 20 18% 15%

“I used a utility class. This class stores usernames and passwords in a Map data structure, and then provides functions for user
registration and login.” (scored 0)

Acknowledgment of limitations The developer noted that their code has limitations, and that it doesn’t have a
certain feature (e.g. it is insecure).

14 7% 12%

“It assures the storage of password and allows to recover the password easily even if the security is not high.” (scored 3)

Perceived best practice The developer did it this way as this is the correct way to store a password or a
standard way in their company.

20 18% 12%

“this is most accepted way of storing passwords” (scored 4)

Consideration of threats The developer considered a threat that might attack the code and explicitly
attempted to mitigate that threat.

18 18% 9%

“Hashing passwords is a necessity, storing passwords in plain text is a huge security concern: and should never even be considered.”

(scored 2)

Taken under advisement Someone told them this was a good way to do it. 1 0% 0%

“my friend who is into cybersecurity told me about this” (scored 1)

Only way I know The developer indicates that this is the only way they knew how to complete the
task.

15 11% 12%

“That was the only way i knew to solve that problem” (scored 0)

TABLE VII
CODEBOOK FROM THE ANALYSIS OF DEVELOPERS’ RESPONSES TO WHAT THREATS DID THEY CONSIDER WHEN STORING THE PASSWORDS. ONLY

DEVELOPERS WHO INDICATED THAT THEY HAD CONSIDERED A THREAT’S RESPONSES WERE ANALYZED. QUOTES ARE GIVEN TO ILLUSTRATE THE USE

OF ALL CODES WITH RELEVANT PASSAGES UNDERLINED. SOME RESPONSES WERE ASSIGNED MORE THAN ONE CODE. NO MORE THAN 4 CODES WERE

USED TO CAPTURE ANY SINGLE RESPONSE.

Code Description Count P
ro

m
p

te
d

S
p

e
c

N
o

S
p

e
c

Access Threat from unauthorized access to the database (e.g. leaks). 36 34% 15%

“Password leaks” (scored 6)

Cracking Threat from attacks on stored passwords (e.g. cracking or rainbow tables). 20 16% 12%

“reverse the hash code but i think that is impossible because is unidirectional” (scored 1)

Hacking Threat from unspecified threat actors, phishing or social engineering. 16 11% 12%

“Stealing them by a hacker, hacked by an unknown user to steal information and data” (scored 0)

Programming concerns. The threat from vulnerabilities in their code (e.g. bugs, SQL injection) 10 8% 3%

“SQL injection, unauthorized DB access” (scored 3)

Confidentiality Concerns about making the stored passwords harder to see. 10 10% 3%

“Someone accessing the content that is not the main user. If I used strings the password would be stored in strings until the Garbage

Collector clears it and we cannot control when that happens.” (scored 0)

Malware Threat from malware, key-loggers or network attacks. 6 5% 6%

“Someone tracing you with keylogger or maybe trojan horse” (scored 2)

Reflection Consideration of what they should have done and the security of their implementation. 5 3% 3%

“Since the good is quite simple, I am not certain if the storage is secure.” (scored 0)

Wider-context Concerns about the wider impact of an insecurely stored password. 2 2% 0%

“Potential of a database dump, hackers can just login if the passwords were stored in plain text, with hashed passwords they would
need to brute force the password. Failure to secure our users passwords
could lead to them having their accounts on other platforms compromised too as users tend to reuse passwords.” (scored 2)

Insider-threat Threats from insiders who might have access to stored passwords. 2 3% 0%

“The database being accessed by a 3rd party, internal threat actors(excepting those with access to the code for password storage)”
(scored 4)

Developers indicated that they knew their answer was correct

because they had done similar tasks before calling upon both

their experience as well as previously written code:

“Because I wrote a user registration system in the

past.” (scored 2)

“I’m used to implementing similar login and

authentication mechanisms in university projects and

the thought process is always the same:. . . ” (scored 0)

“I wrote code like this because it is something I have

done before. I’ve written a login system for a password

manager so recognize that passwords before storage

should always be hashed or encrypted to avoid storing

them in plain text.. . . ” (scored 2)

The relevant part of the code based on the login system for

the password manager looked like:

user.username = std::cin.get();

user.password = hashPassword(std::cin.get

());} . . .

void hashPassword(std::string password) {

//Cryptography algorithm to hash password

, preferably using a salt }

It hashed the password with a cryptography algorithm. It

would preferably use salt. Another developer told us that they

had taken advice from someone they considered knowledge-

able about cybersecurity:

“my friend who is into cybersecurity told me about

this” (scored 1)

Yet the solution their friend supplied was mostly inadequate,

only showing signs of hashing (with MD5).

. . . string hashpass = MD5(password);

PasswordDatabase.put("login","password");"

This group of developers appear to believe their answers

are correct, and that they are following best practice.

They indicate that code similar to what they wrote is in

projects they’ve implemented. Yet despite this, there are many

low scores. One developer described their experience as:

“I have been working as a software engineer for 8

years and have developed authentication systems for

our clients hundreds of times so have come to learn the

best practices for doing so.” (scored 3)

Their score would suggest they have more to learn.

Not all developers seemed to be so confident. In con-

trast to the first group, other developers gave explana-

tions that suggest they are aware that they don’t know

how to store passwords properly, or at least that their

code had limitations. For example one developer stated:

“I don’t have a lot of knowledge about password

storaging. . . ” (scored 1)

Their implementation hashed the password, suggesting the

developer was confused about the distinction between hashing

and encryption:

... string encpass = anHashingFunction(

password);

myfile << username << endl;

myfile << encpass << endl;

They scored 1 point using Naiakshina’s criteria, for hashing

the password. Another said:
“I wrote the code that way since it’s the only way I

know how to check if the passwords are valid, and the

hashing / storing bit because unhashed passwords are

unsafe. . . . Other methods could be used to encrypt the

password, but I’ve heard hashing or MD5 hashing is

the most common.” (scored 1)

The following two explanations came from developers who

were in the top 10% of highest scoring implementations,

according to Naiakshina’s criteria. Both acknowledge the

security of their implementations, and that it wasn’t perfect:

“It assures the storage of password and allows to

recover the password easily even if the security is not

high.” (scored 3)

“It was the simplest and easiest way I could think . . .

This way it protects most cases, but of course a more

elaborate with more defence lines is needed (and the

salt implementations is not very well done, . . .)”

(scored 4)

This group of developers form a counterpoint to the first group

who think they know how to store passwords: they know they

don’t know everything. Whilst directly comparing groups is

hard (the codes are not independent, and emerge from what

developers said) a comparison of average score between them

suggests that neither group is storing passwords more securely

(comparison of mean score between the think they know and

know they don’t know groups: 0.79 vs 0.63). In short, roughly

a third of developers appear to be overly confident in their

knowledge of best practice in our study. Despite this their

answers do indicate that developers are aware that password

storage is an inherently security oriented task. They know they

should be storing passwords securely, but plenty of them are

overconfident and have misplaced assurance in what they do.

B. On reflection, perhaps you know

The acknowledgment of limitations code from Table VI and

the reflection code from Table VII are interesting as they

highlight when developers indicated that their implementation

was lacking security aspects. For example, one developer re-

membered to use a hash function with a suitable length in their

implementation. When stating which threats they considered

they note that they had forgotten to salt the password (and

why that was necessary).

“. . . (Thinking about it, it might have been a good idea

to concatenate some constant text at the end of the

password so that whether the user uses the same

password on two different attacked services cannot be

determined simply by checking whether the hashes are

identical.)” (scored 2)

Others, on reflection, realized their solution was inadequate

(with respect to security). Both of the following developers

stored their passwords directly as plain-text (scoring 0), yet

when asked to consider the threats they later seemed to realize

that there were some they should have considered:

“Unfortunately, I have not considered any threats, but I

know that the password should be encrypted.” (scored 0)

“Actually I didn’t consider them in the pseudo-code but

I assume there are some threats like brute hacking”

(scored 0)

One developer stored their password directly, but when con-

sidering threats gave a guide to storing them that would have

scored at least 3:
“The best security practice is not to store the password

at all (not even encrypted), but to store the salted hash

(with a unique salt per password) of the encrypted

password.” (scored 0)

Whilst we did not prime developers for storing passwords

securely as Naiakshina did [5], we still found that developers

talked about the security of their implementation. Around half

of the developers reported considering threats when imple-

menting their solutions, and some made reference to those

threats when describing why they’d implemented the code in

the way that they did. The threats described in Table VII are

reasonable: the reason we hash and salt passwords is to ensure

if the database is accessed illegally, that the passwords cannot

be trivially cracked. This is hopeful: it suggests developers

may be learning that passwords and security are linked and that

they should store them securely, not if we want them to [5].

Developers may not realize it immediately that passwords

TABLE VIII
SITES APPARENTLY REFERENCED BY DEVELOPERS.

Source Count

stackoverflow.com 12
gist.github.com 1
docs.microsoft.com 1
simplecode121.blogspot.com 1
www.programcreek.com 1
happycoding.io 1
www.baeldung.com 1
pypi.org 1
www.codota.com 1
medium.com 1
www.the-art-of-web.com 1
www.tutorialspoint.com 1
www.cpp.re 1
docs.python.org 1
www.w3resource.com 1
howtodoinjava.com 1

should be stored securely, but if given time to reflect they

do seem to make that connection. Even if a developer doesn’t

initially realize that password storage is a security oriented

task, by giving them time to reflect (in complement with time

to consider a specification) some developers do realize that

passwords must be stored securely.

C. Google is your friend

There is much guidance and advice online about how to

store passwords (on sites such as Stack Overflow, for example).

When analyzing developers reasons and implementations, we

checked for copying from such sites. We searched online to

see if any of the implementations and pseudocode developers

provided appeared online and found 12 appearing on the Stack

Overflow developer forum alongside 15 others appearing on

other websites (Table VIII). We found that 27 developers

(20%) appeared to have copied code from various sites (shown

in Table VIII), with the majority having taken code directly

from Stack Overflow. Of these 27, 7 reported using a standard.

The group that used the online source appeared to score

significantly higher than the group whose source was unknown

(µ = 1.19 vs µ = 0.60, p = 0.017) though the effect size

was relatively small (U = 1155, rrb = 0.23); however when

reading the solutions online we noticed that some of the arti-

cles developers appeared to have copied from also contained

guidance on how to store them near-perfectly (according to

Naiakshina’s criteria). One developer justified their answer as:

“I wrote the code like this because it is good practice

not to store a password in clear.” (scored 2)

The solution appeared to have been taken from a how-to site

which described how to implement password storage with a

variety of hashes and salts, starting with MD5 and ending

with bcrypt and scrypt; however the site went on to describe

a solution at the end of the article that would have scored

6 points (losing the last point for only using 16 instead of

32 bits for the salt).

Another developer described their implementation as:

“The first and foremost way to store passwords in your

database is to have the plain text.. . . ” (scored 0)

This came from a blog post [52]. The remainder states:

“(don’t do this) I can’t emphasize strongly enough that

you should NEVER, EVER, store passwords in plain

text.”
The article does describe how to store passwords using a

hash and a randomly generated salt (3 points); yet again the

developer only copied the insecure counter-example at the

start of the article.If we want developers to store passwords

correctly then we need to make sure the code we want them

to copy is immediately obvious. That developers are copying

code from online isn’t of itself worrying—if they copied the

right solutions we might see secure password storage. Instead,

some developers seem to be copying online code, using the

articles to justify themselves, but not reading the article all the

way through.

VI. DISCUSSION

A. Do specifications lead to securely stored passwords?

Writing a specification has a small, but positive, effect on

developers ability to store passwords securely. Yet in saying

this, we avoid the bigger issue that developers seem to really

struggle with implementing password storage correctly. In our

study 62% of developers failed to hash, salt or add any security

mechanism whatsoever.

Our paper joins an ever-growing body of work demon-

strating that developers are struggling implementing password

storage [53], [3], [5]; but our work also finds that it isn’t

just that developers struggle to use cryptography APIs [54],

[41]; and it isn’t just that developers don’t know enough

about cryptography to complete the task correctly: developers

stated that hashing passwords with MD5 was best practice

(it isn’t [20]). Developers would forget about salting and say

that’s the way that they do it in their company. They would

claim cybersecurity expertise, to have password storage code

in production, as reasons why their code is secure; as reasons

why their code follows best practice—and yet they fall short.

Our paper finds that specification is beneficial (p = 0.024),

but, equally importantly, it highlights that developers don’t

know that they’re storing passwords insecurely.

B. Beyond Naiakshina’s criteria

In this study we measured developers’ ability to store

passwords using Naiakshina’s criteria, as a proxy for the

NIST SP 800-63-3 standard [20] which defines current best

practice. The criteria and standard itself is somewhat quiz-

like, asking developers to remember cryptographic techniques

like hashing and salting as well as arbitrary lengths and counts.

If developers do not know these requirements then they will

not remember them. so what then do we learn beyond the fact

that developers do not seem to recall Naiakshina’s criteria?

An ideal specification might have listed the criteria in full as

functional requirements, but it might also have been as simple

as: “store the password securely, following NIST SP 800-63-

3.”; yet none of the developers in our study made reference

to any standard in their specifications. Developers seemed to

know there was a best practice they ought to be following,

yet didn’t appear to go look up what it actually was. Whether

this generalizes and developers’ recollection of other standards

is equally poor is a topic for future work. Whilst one good

approach to implementing password storage is to do what

the standard says, another equally valid (and arguably better)

aproach is to use a framework and let it do it for you. Web-

frameworks, like Django, include password storage systems

(and in Django’s case explicitly reference NIST password

standards [55]) and can take care of passwords for developers.

Again, developers in our study did not appear to make use of

frameworks like this, so is it that developers are unaware of

these features inside frameworks, or did they choose not to

use them? Perhaps given the seeming recalcitrance towards

reading standards, the resistance towards using frameworks,

and the confidence many displayed that they were in fact

following best practice we might conclude that developers are

over confident in their abilities. Why use a library when you

can implement it yourself trivially? Why check the standard

when you know already what best practice is? Developers

seem to have learned not to roll their own crypto; perhaps they

should also consider avoiding rolling their own authentication

in future too?

C. Developers are still not the enemy

We say that users and developers are not the enemy [56],

[54]—that we must not blame users or developers when an

API or security interface is not designed for a human to be

able to use correctly. Yet when we talk about password storage

we present it as a list diktats that developers must implement to

ensure they do the task correctly. As we, and others [53], [3],

[5], have shown developers cannot follow these instructions.

Perhaps then, instead of pointing out that developers can’t

store passwords and providing lists on what they must do,

we should fit the task to the human and provide alternative

mechanisms for storing passwords correctly without having to

remember what the current best practice actually is, or under-

stand the intricacies of various hashing schemes. Truman said

of being the President: “He’ll sit here and he’ll say, “Do this!

Do that!” And nothing will happen” [1]; and a comparison

can be drawn to the security and cryptography communities:

we cannot keep sitting here; saying, “Hash this! Salt That!”

and pointing at NIST SP 800-63-3, because Truman was right:

“nothing will happen”. We need to find usable mechanisms

for password storage. What might these mechanisms look

like? Cryptography libraries, such as Google’s Tink [57], are

attempting to wrap cryptographic details so that developers can

use cryptography without understanding what a hash really

is [58]. There has been limited usability validation of such

approaches [59], however, and further work, documentation,

and exemplar code [41] is needed to show whether this ap-

proach is effective. Alternatively, some developers seemed to

copy code from online sources—ensuring that developers can

find the trivially find the right way to store passwords and that

the right code is trivially available may also help developers

without requiring them to understand the cryptographic details.

Finally, a different solution altogether may be to encourage

developers not to store passwords at all and instead use

federated identity management systems (such as OAuth [10]).

Whilst these systems can remove the need for some app

developers to implement cryptography correctly, they come

with their own set of privacy and security gotchas [60] and

challenges [61]—we should be cautious that by recommending

an alternative to passwords we are not replacing the challenge

of storing a password with the challenge of implementing a

federated authentication system. Work on privacy-preserving

federated identity management has helped to resolve some

of the privacy challenges associated with federated identity

management [62], [63], though these are yet to be widely

adopted in practice.

Explicitly prompting developers to write a specification does

help improve the quality of password storage; but developers

are still mostly failing at password storage whilst still believing

they are getting it right. Giving developers time to reflect

helps them realize the limitations of their approach: but until

we have developer-centered usable password storage methods,

the problem of poorly stored passwords isn’t going away. We

can do better than saying “Do this! Do that!” and watching

nothing happen.

VII. CONCLUSION

Does the act of writing a specification (how the code

should behave) for a piece of security sensitive code lead

to developers producing more secure code? In a statistical

sense: yes, though the effect is small (p = 0.027, rrb =

0.209). In a broader sense however we show that whilst

writing a specification does help developers remember more

of the conditions for secure password storage, leaving this

task to a memory exercise and hoping developers refer to

a standard isn’t working. Future work should examine and

empirically evaluate alternative strategies for helping devel-

opers complete authentication tasks—whether in the form of

usable cryptography libraries, privacy preserving federated

identity schemes, or alternative awareness schemes to diktats

and standards. Additionally, whilst this study looked to see

if any form of specification improved developers ability to

store passwords correctly; specific approaches (whether that

be software building codes [64], requirements engineering, or

formal verification) may yield more promising results. Finally,

in this study we saw developers struggling to remember how

to do secure password storage, but we may see similar results

for other areas where knowledge of what the right thing to do

is conveyed only through diktats and standards—future work

should examine whether this result is general or specific to

password storage.

ACKNOWLEDGMENT

This research is supported in part by EPSRC Grant

EP/P011799/2 and the National Cyber Security Centre.

REFERENCES

[1] R. E. Neustadt, Presidential power. New American Library New York,
1960.

[2] F. P. Brooks Jr., The Mythical Man-Month. Addison Wesley, 1975, ch.
6. Passing the Word.

[3] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong?: A
qualitative usability study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ACM. Dallas,
TX: ACM, 2017, pp. 311–328.

[4] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “Deception
task design in developer password studies: Exploring a student
sample,” in Fourteenth Symposium on Usable Privacy and

Security, M. E. Zurko and H. R. Lipford, Eds. Baltimore,
MD: USENIX Association, 2018, pp. 297–313. [Online]. Available:
https://www.usenix.org/conference/soups2018/presentation/naiakshina

[5] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and
M. Smith, ““If you want, I can store the encrypted password”: A
password-storage field study with freelance developers,” in Proceedings

of the 2019 CHI Conference on Human Factors in Computing

Systems, S. A. Brewster, G. Fitzpatrick, A. L. Cox, and V. Kostakos,
Eds. Glasgow, Scotland: ACM, 2019, p. 140. [Online]. Available:
https://doi.org/10.1145/3290605.3300370

[6] A. N. Meyer, T. Zimmermann, and T. Fritz, “Characterizing software
developers by perceptions of productivity,” in ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
A. Bener, B. Turhan, and S. Biffl, Eds. Toronto, ON, Canada:
IEEE Computer Society, 2017, pp. 105–110. [Online]. Available:
https://doi.org/10.1109/ESEM.2017.17

[7] D. van der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Petre,
M. Levine, J. Towse, and A. Rashid, “Schrödinger’s security: Opening
the box on app developers’ security rationale,” in 42nd International

Conference on Software Engineering (ICSE), 2020.
[8] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking

about? An analysis of topics and trends in Stack Overflow,” Empirical

Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.
[9] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security

questions do developers ask? A large-scale study of Stack Overflow
posts,” Journal of Computer Science and Technology, vol. 31, no. 5, pp.
910–924, 2016.

[10] D. Hardt et al., “The OAuth 2.0 authorization framework,” RFC 6749,
Tech. Rep., 2012.

[11] B. W. Boehm, “Verifying and validating software requirements and
design specifications,” IEEE Software, vol. 1, no. 1, p. 75, 1984.

[12] D. L. Parnas, “A technique for software module specification with
examples,” Communications of the ACM, vol. 15, no. 5, pp. 330–336,
1972.

[13] J. Spolsky, “The Joel test: 12 steps to better code,” in Joel on Software.
Springer, 2004, pp. 17–30.

[14] T. DeMarco, “Structure analysis and system specification,” in Pioneers
and Their Contributions to Software Engineering. Springer, 1979, pp.
255–288.

[15] B. Meyer, “Applying “design by contract”,” IEEE Computer,
vol. 25, no. 10, pp. 40–51, 1992. [Online]. Available:
https://doi.org/10.1109/2.161279

[16] S. Furnell and K.-L. Thomson, “Recognising and addressing ‘security
fatigue’,” Computer Fraud & Security, vol. 2009, no. 11, pp. 7–11, 2009.

[17] S. Parkin, K. Krol, I. Becker, and M. A. Sasse, “Applying
cognitive control modes to identify security fatigue hotspots,” in
Twelfth Symposium on Usable Privacy and Security (SOUPS 2016).
Denver, CO: USENIX Association, Jun. 2016. [Online]. Available:
https://www.usenix.org/conference/soups2016/workshop-program/wsf/presentation/parkin

[18] A. van Lamsweerde, “Formal specification: a roadmap,” in 22nd

International Conference on on Software Engineering, Future of

Software Engineering Track, ICSE 2000, Limerick Ireland, June 4-11,
2000, A. Finkelstein, Ed. ACM, 2000, pp. 147–159. [Online].
Available: https://doi.org/10.1145/336512.336546

[19] A. Padegs, “System/360 and beyond,” IBM Journal of Research and
Development, vol. 25, no. 5, pp. 377–390, 1981.

[20] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Digital identity guidelines,”
NIST, Standard Special Publication 800-63-3, 2017.

[21] R. G. Dromey, “Cornering the chimera [software quality],” IEEE Soft-
ware, vol. 13, no. 1, pp. 33–43, 1996.

[22] T. Haigh and C. Landwehr, “Building code for medical device software
security,” IEEE Cybersecurity, 2015.

[23] C. E. Landwehr and A. Valdes, “Building code for power system
software security,” Technical Report. IEEE Computer Society, 2017.

[24] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer, “What
good are strong specifications?” in 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May

18-26, 2013, D. Notkin, B. H. C. Cheng, and K. Pohl, Eds.
IEEE Computer Society, 2013, pp. 262–271. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606572

[25] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation,”
in Proceedings of the 36th International Conference on Software

Engineering, ser. ICSE 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 895–906. [Online]. Available:
https://doi.org/10.1145/2568225.2568235

[26] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security
developer studies with GitHub users: Exploring a convenience sample,”
in Thirteenth Symposium on Usable Privacy and Security (SOUPS

2017), 2017, pp. 81–95.
[27] S. Oesch and S. Ruoti, “That was then, this is now: A security evaluation

of password generation, storage, and autofill in browser-based password
managers,” in Proc. of USENIX Security Symp, 2020.

[28] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, “Encountering stronger password
requirements: user attitudes and behaviors,” in Proceedings of the Sixth

Symposium on Usable Privacy and Security, 2010, pp. 1–20.
[29] B. Ur, G. Kelley, S. Komanduri, J. Lee, M. Maase, M. L.Mazurek,

T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, L. F.Cranor,
S. Egleman, and J. López, “Helping users create better passwords,”
USENIX ;login:, 2012.

[30] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer, N. Christin,
and L. F. Cranor, “” i added’!’at the end to make it secure”: Observing
password creation in the lab,” in Eleventh Symposium On Usable Privacy

and Security ({SOUPS} 2015), 2015, pp. 123–140.
[31] B. Ur, J. Bees, S. M. Segreti, L. Bauer, N. Christin, and L. F. Cranor, “Do

users’ perceptions of password security match reality?” in Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems,
2016, pp. 3748–3760.

[32] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F.
Cranor, H. Dixon, P. Emami Naeini, H. Habib et al., “Design and
evaluation of a data-driven password meter,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, 2017, pp.
3775–3786.

[33] J. Bonneau, “The science of guessing: analyzing an anonymized corpus
of 70 million passwords,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 538–552.

[34] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Her-
ley, “Does my password go up to eleven? the impact of password meters
on password selection,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 2013, pp. 2379–2388.
[35] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,

N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in Proceedings

of the sigchi conference on human factors in computing systems, 2011,
pp. 2595–2604.

[36] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics
for password creation policies by attacking large sets of revealed
passwords,” in Proceedings of the 17th ACM conference on Computer

and communications security, 2010, pp. 162–175.
[37] C. Weir, B. Hermann, and S. Fahl, “From needs to actions to secure

apps? the effect of requirements and developer practices on app security,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020.

[38] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on Android application security,” in 2017 IEEE Symposium on Security

and Privacy (SP). IEEE, 2017, pp. 121–136.
[39] S. Nadi, S. Kriüger, M. Mezini, and E. Bodden, “Jumping through

hoops: Why do Java developers struggle with cryptography APIs?” in
2016 IEEE/ACM 38th International Conference on Software Engineer-

ing (ICSE), 2016, pp. 935–946.
[40] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical

study of cryptographic misuse in android applications,” in Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 73–84.

https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1109/ESEM.2017.17
https://doi.org/10.1109/2.161279
https://www.usenix.org/conference/soups2016/workshop-program/wsf/presentation/parkin
https://doi.org/10.1145/336512.336546
https://doi.org/10.1109/ICSE.2013.6606572
https://doi.org/10.1145/2568225.2568235

[41] N. Patnaik, J. Hallett, and A. Rashid, “Usability smells: An analysis of
developers’ struggle with crypto libraries,” in Fifteenth Symposium on
Usable Privacy and Security ({SOUPS} 2019), 2019.

[42] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of

mathematical statistics, pp. 50–60, 1947.
[43] E. E. Cureton, “Rank-biserial correlation,” Psychometrika, vol. 21, no. 3,

pp. 287–290, 1956.
[44] A. L. Strauss and J. M. Corbin, Basic of qualitative research: Techniques

and procedures for developing Grounded Theory. Sage Publications,
1998.

[45] B. G. Glaser and A. L. Strauss, The discovery of Grounded Theory:

strategies for qualitative research. New York: Aldine de Gruyter, 1967.
[46] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,

N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and
again): Measuring password strength by simulating password-cracking
algorithms,” in 2012 IEEE symposium on security and privacy. IEEE,
2012, pp. 523–537.

[47] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On conducting
security developer studies with CS students: Examining a password-
storage study with CS students, freelancers, and company developers,”
in CHI Conference on Human Factors in Computing Systems,
R. Bernhaupt, F. F. Mueller, D. Verweij, J. Andres, J. McGrenere,
A. Cockburn, I. Avellino, A. Goguey, P. Bjøn, S. Zhao, B. P. Samson,
and R. Kocielnik, Eds. Honolulu, HI: ACM, 2020, pp. 1–13. [Online].
Available: https://doi.org/10.1145/3313831.3376791

[48] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[49] C. Spearman, “The proof and measurement of association between two
things,” Studies in individual differences: The search for intelligence,
1961.

[50] M. Hazhirpasand, M. Ghafari, S. Krüger, E. Bodden, and O. Nierstrasz,
“The impact of developer experience in using Java cryptography,”
in 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2019, pp. 1–6.

[51] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[52] J. Cox, “Password storage methods,” 2017. [Online]. Available:
https://medium.com/@jcox250/password-storage-d480309ca08f

[53] C. Wijayarathna and N. A. G. Arachchilage, “Why johnny can’t
store passwords securely? a usability evaluation of bouncycastle

password hashing,” in Proceedings of the 22nd International

Conference on Evaluation and Assessment in Software Engineering
2018, ser. EASE’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 205–210. [Online]. Available:
https://doi.org/10.1145/3210459.3210483

[54] M. Green and M. Smith, “Developers are not the enemy!: The need
for usable security APIs,” IEEE Security & Privacy, vol. 14, no. 5, pp.
40–46, 2016.

[55] “Password management in django,” accessed 2021-01-22. [Online].
Available: https://docs.djangoproject.com/en/3.1/topics/auth/passwords/

[56] A. Adams and M. A. Sasse, “Users are not the enemy,” Communications

of the ACM, vol. 42, no. 12, pp. 40–46, 1999.
[57] Google, “Tink.” [Online]. Available: https://github.com/google/tink
[58] S. Schmieg, “This issue demonstrates nicely how software engineers

and cryptographers have a completely different idea about what a
hash function does. for many software engineers, a hash function is
a “one-way” function, with the output being essentially meaningless.”
August 2020, tweet. @SchmiegSophie. [Online]. Available:
https://mobile.twitter.com/SchmiegSophie/status/1292930642561265664

[59] K. Mindermann and S. Wagner, “Fluid intelligence doesn’t matter!
Effects of code examples on the usability of crypto APIs,” in 42nd

International Conference on Software Engineering (ICSE) Posters, 2020,
poster.

[60] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett, “OAuth
2.0 security best current practice,” IETF Web Authorization Protocol,
Tech. Rep. draft-ietf-oauth-security-topics-16, 2020. [Online]. Available:
https://www.ietf.org/id/draft-ietf-oauth-security-topics-16.html

[61] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
an empirical analysis of OAuth SSO systems,” in Proceedings of the

2012 ACM conference on Computer and communications security, 2012,
pp. 378–390.

[62] S. S. Chow, Y.-J. He, L. C. Hui, and S. M. Yiu, “SPICE–simple privacy-
preserving identity-management for cloud environment,” in International
Conference on Applied Cryptography and Network Security. Springer,
2012, pp. 526–543.

[63] M. Isaakidis, H. Halpin, and G. Danezis, “UnlimitID: Privacy-preserving
federated identity management using algebraic MACs,” in Proceedings

of the 2016 ACM on Workshop on Privacy in the Electronic Society,
2016, pp. 139–142.

[64] C. Landwehr, “We need a building code for building code,” vol. 58,
no. 2, 2015. [Online]. Available: https://doi.org/10.1145/2700341

https://doi.org/10.1145/3313831.3376791
https://medium.com/@jcox250/password-storage-d480309ca08f
https://doi.org/10.1145/3210459.3210483
https://docs.djangoproject.com/en/3.1/topics/auth/passwords/
https://github.com/google/tink
https://mobile.twitter.com/SchmiegSophie/status/1292930642561265664
https://www.ietf.org/id/draft-ietf-oauth-security-topics-16.html
https://doi.org/10.1145/2700341

	I Introduction
	II Background and Related Work
	II-A Benefits of specification
	II-B Work on password security
	II-C Work on secure programming

	III Method
	III-A Study Design
	III-B Analysis
	III-C Recruitment and Ethics
	III-D Limitations and Threats to Validity

	IV Quantitative Results
	IV-A RQ1: Do specifications lead to securely stored passwords?
	IV-B So what else has an effect?
	IV-C RQ2: What did developers do?

	V RQ3: Why are developers storing passwords like this?
	V-A You either think you do know, or you know you don't know
	V-B On reflection, perhaps you know
	V-C Google is your friend

	VI Discussion
	VI-A Do specifications lead to securely stored passwords?
	VI-B Beyond Naiakshina's criteria
	VI-C Developers are still not the enemy

	VII Conclusion
	References

